Archive | Web Applications RSS for this section

Teaching/Learning Weather and Climate via Pencasting

I first heard about it a few years ago, and thought it sounded interesting … and then, this past Summer, I did a little more research and decided to purchase a Livescribe 8 GB Echo(TM) Pro Pack. Over the Summer, I took notes with the pen from time-to-time and found it to be somewhat useful/interesting.

Just this week, however, I decided it was time to use the pen for the originally intended purpose: Making pencasts for the course I’m currently teaching in weather and climate at Toronto’s York University. Before I share some sample pencasts, please allow me to share my findings based on less than a week’s worth of `experience’:

  • Decent-quality pencasts can be produced with minimal effort – I figured out the basics (e.g., how to record my voice) in a few minutes, and started on my first pencast. Transferring the pencast from the pen to the desktop software to the Web (where it can be shared with my students) also requires minimal effort. “Decent quality” here refers to both the visual and audio elements. The fact that this is both a very natural (writing with a pen while speaking!) and speedy (efficient/effective) undertaking means that I am predisposed towards actually using the technology whenever it makes sense – more on that below. Net-net: This solution is teacher-friendly.
  • Pencasts compliment other instructional media – This is my current perspective … Pencasts compliment the textbook readings I assign, the lecture slides plus video/audio captures I provide, the Web sites we all share, the Moodle discussion forums we engage in, the Tweets I issue, etc. In the spirit of blended learning it is my hope that pencasts, in concert with these other instructional media, will allow my TAs and I to `reach’ most of the students in the course.
  • Pencasts allow the teacher to address both content and skills-oriented objectives – Up to this point, my pencasts have started from a blank page. This forces me to be focused, and systematically develop towards some desired content (e.g., conceptually introducing the phase diagram for H2O) and/or skills (e.g., how to calculate the slope of a line on a graph) oriented outcome. Because students can follow along, they have the opportunity to be fully engaged as the pencast progresses. Of course, what this also means is that this technology can be as effective in the first-year university level course I’m currently teaching, but also at the academic levels that precede (e.g., grade school, high school, etc.) and follow (senior undergraduate and graduate) this level.
  • Pencasts are learner-centric – In addition to be teacher-friendly, pencasts are learner-centric. Although a student could passively watch and listen to a pencast as it plays out in a linear, sequential fashion, the technology almost begs you to interact with it. As noted previously, this means a student can easily replay some aspect of the pencast that they missed. Even more interestingly, however, students can interact with pencasts in a random-access mode – a mode that would almost certainly be useful when they are attempting to apply the content/skills conveyed through the pencast to a tutorial or assignment they are working on, or a quiz or exam they are actively studying for. It is important to note that both the visual and audio elements of the pencast can be manipulated with impressive responsiveness to random-access input from the student.
  • I’m striving for authentic, not perfect pencasts – With a little more practice and some planning/scripting, I’d be willing to bet that I could produce an extremely polished pencast. Based on past experience teaching today’s first-year university students, I’m fairly convinced that this is something they couldn’t care less about. Let’s face it, my in-person lectures aren’t perfectly polished, and neither are my pencasts. Because I can easily go back to existing pencasts and add to them, I don’t need to fret too much about being perfect the first time. Too much time spent fussing here would diminish the natural and speedy aspects of the technology.

Findings aside, on to samples:

  • Calculating the lapse rate for Earth’s troposphere – This is a largely a skills-oriented example. It was my first pencast. I returned twice to the original pencast to make changes – once to correct a spelling mistake, and the second time to add in a bracket (“Run”) that I forgot. I communicated these changes to the students in the course via an updated link shared through a Moodle forum dedicated to pencasts. If you were to experience the updates, you’d almost be unaware of the lapse of time between the original pencast and the updates, as all of this is presented seamlessly as a single pencast to the students.
  • Introducing the pressure-temperature phase diagram for H2O – This is largely a content-oriented example. I got a little carried away in this one, and ended up packing in a little too much – the pencast is fairly long, and by the time I’m finished, the visual element is … a tad on the busy side. Experience gained.

Anecdotally, initial reaction from the students has been positive. Time will tell.

Next steps:

  • Monday (October 1, 2012), I intend to use a pencast during my lecture – to introduce aspects of the stability of Earth’s atmosphere. I’ll try to share here how it went. For this intended use of the pencast, I will use a landscape mode for presentation – as I expect that’ll work well in the large lecture hall I teach in. I am, however, a little concerned that the lines I’ll be drawing will be a little too thin/faint for the students at the back of the lecture theatre to see …
  • I have two sections of the NATS 1780 Weather and Climate course to teach this year. One section is taught the traditional way – almost 350 students in a large lecture theatre, 25-student tutorial groups, supported by Moodle, etc. In striking contrast to the approach taken in the meatspace section, is the second section where almost everything takes place online via Moodle. Although I have yet to support this hypothesis with any data, it is my belief that these pencasts are an excellent way to reach out to the students in the Internet-only section of the course. More on this over the fullness of time (i.e., the current academic session.)

Feel free to comment on this post or share your own experiences with pencasts.

Aakash: A Disruptive Innovation in the Truest Sense

Much has been, and will be, written about the Aakash tablet.

[With apologies for the situational monsoonal imagery …] As I awash myself in Aakash, I am particularly taken by:

  • The order of magnitude reduction in price point. With a stated cost of about $50, marked-up prices are still close to an order of magnitude more affordable than the incumbent offerings (e.g., the iPad, Android-based tablets, etc.). Even Amazon’s Kindle Fire is 2-3 times more expensive.
  • The adoption of Android as the innovation platform. I take this as yet another data point (YADP) in firmly establishing Android as the leading future proofed platform for innovation in the mobile-computing space. As Aakash solidly demonstrates, it’s about the all-inclusive collaboration that can occur when organizational boundaries are made redundant through use of an open platform for innovation. These dynamics just aren’t the same as those that would be achieved by embracing proprietary platforms (e.g., Apple’s iOS, RIM QNX-based O/S, etc.).
  • The Indian origin. It took MIT Being Digital, in the meatspace personage of Nicholas Negroponte, to hatch the One Laptop Per Child initiative. In the case of Aakash, this is grass-roots innovation that has Grameen Bank like possibilities.
While some get distracted comparing/contrasting tech specs, the significant impact of Aakash is that it is a disruptive innovation in the truest sense:
“An innovation that is disruptive allows a whole new population of consumers access to a product or service that was historically only accessible to consumers with a lot of money or a lot of skill.  Characteristics of disruptive businesses, at least in their initial stages, can include:  lower gross margins, smaller target markets, and simpler products and services that may not appear as attractive as existing solutions when compared against traditional performance metrics.”
I am certainly looking forward to seeing this evolve!

Disclaimers:
  • Like Aakash, I am of Indian origin. My Indian origin, however, is somewhat diluted by some English origin – making me an Anglo-Indian. Regardless, my own origin may play some role in my gushing exuberance for Aakash – and hence the need for this disclaimer.
  • I am the owner of a Motorola Xoom, but not an iPad. This may mean I am somewhat predisposed towards the Android platform.
Feel free to chime in with your thoughts on Aakash by commenting on this post.

Targeting Public Speaking Skills via Virtual Environments

Recently I shared an a-ha! moment on the use of virtual environments for confronting the fear of public speaking.

The more I think about it, the more I’m inclined to claim that the real value of such technology is in targeted skills development.

Once again, I’ll use myself as an example here to make my point.

If I think back to my earliest attempts at public speaking as a graduate student, I’d claim that I did a reasonable job of delivering my presentation. And given that the content of my presentation was likely vetted with my research peers (fellow graduate students) and supervisor ahead of time, this left me with a targeted opportunity for improvement: The Q&A session.

Countless times I can recall having a brilliant answer to a question long after my presentation was finished – e.g., on my way home from the event. Not very useful … and exceedingly frustrating.

I would also assert that this lag, between question and appropriate answer, had a whole lot less to do with my expertise in a particular discipline, and a whole lot more to do with my degree nervousness – how else can I explain the ability to fashion perfect answers on the way home!

image006Over time, I like to think that I’ve approved my ability to deliver better-quality answers in real time. How have I improved? Experience. I would credit my experience teaching science to non-scientists at York, as well as my public-sector experience as a vendor representative at industry events, as particularly edifying in this regard.

Rather than submit to such baptisms of fire, and because hindsight is 20/20, I would’ve definitely appreciated the opportunity to develop my Q&A skills in virtual environments such as Nortel web.alive. Why? Such environments can easily facilitate the focused effort I required to target the development of my Q&A skills. And, of course, as my skills improve, so can the challenges brought to bear via the virtual environment.

All speculation at this point … Reasonable speculation that needs to be validated …

If you were to embrace such a virtual environment for the development of your public-speaking skills, which skills would you target? And how might you make use of the virtual environment to do so?

Confronting the Fear of Public Speaking via Virtual Environments

Confession: In the past, I’ve been extremely quick to dismiss the value of Second Life in the context of teaching and learning.

Even worse, my dismissal was not fact-based … and, if truth be told, I’ve gone out of my way to avoid opportunities to ‘gather the facts’ by attending presentations at conferences, conducting my own research online, speaking with my colleagues, etc.

So I, dear reader, am as surprised as any of you to have had an egg-on-my-face epiphany this morning …

Please allow me to elaborate:

It was at some point during this morning’s brainstorming session that the egg hit me squarely in the face:

Why not use Nortel web.alive to prepare graduate students for presenting their research?

Often feared more than death and taxes, public speaking is an essential aspect of academic research – regardless of the discipline.

image004Enter Nortel web.alive with its virtual environment of a large lecture hall – complete with a podium, projection screen for sharing slides, and most importantly an audience!

As a former graduate student, I could easily ‘see’ myself in this environment with increasingly realistic audiences comprised of friends, family and/or pets, fellow graduate students, my research supervisor, my supervisory committee, etc. Because Nortel web.alive only requires a Web browser, my audience isn’t geographically constrained. This geographical freedom is important as it allows for participation – e.g., between graduate students at York in Toronto and their supervisor who just happens to be on sabbatical in the UK. (Trust me, this happens!)

As the manager of Network Operations at York, I’m always keen to encourage novel use of our campus network. The public-speaking use case I’ve described here has the potential to make innovative use of our campus network, regional network (GTAnet), provincial network (ORION), and even national network (CANARIE) that would ultimately allow for global connectivity.

While I busy myself scraping the egg off my face, please chime in with your feedback. Does this sound useful? Are you aware of other efforts to use virtual environments to confront the fear of public speaking? Are there related applications that come to mind for you? (As someone who’s taught classes of about 300 students in large lecture halls, a little bit of a priori experimentation in a virtual environment would’ve been greatly appreciated!)

Update (November 13, 2009): I just Google’d the title of this article and came up with a few, relevant hits; further research is required.

On Knowledge-Based Representations for Actionable Data …

I bumped into a professional acquaintance last week. After describing briefly a presentation I was about to give, he offered to broker introductions to others who might have an interest in the work I’ve been doing. To initiate the introductions, I crafted a brief description of what I’ve been up to for the past 5 years in this area. I’ve also decided to share it here as follows: 

As always, [name deleted], I enjoyed our conversation at the recent AGU meeting in Toronto. Below, I’ve tried to provide some context for the work I’ve been doing in the area of knowledge representations over the past few years. I’m deeply interested in any introductions you might be able to broker with others at York who might have an interest in applications of the same.

Since 2004, I’ve been interested in expressive representations of data. My investigations started with a representation of geophysical data in the eXtensible Markup Language (XML). Although this was successful, use of the approach underlined the importance of metadata (data about data) as an oversight. To address this oversight, a subsequent effort introduced a relationship-centric representation via the Resource Description Format (RDF). RDF, by the way, forms the underpinnings of the next-generation Web – variously known as the Semantic Web, Web 3.0, etc. In addition to taking care of issues around metadata, use of RDF paved the way for increasingly expressive representations of the same geophysical data. For example, to represent features in and of the geophysical data, an RDF-based scheme for annotation was introduced using XML Pointer Language (XPointer). Somewhere around this point in my research, I placed all of this into a framework.

A data-centric framework for knowledge representation.

A data-centric framework for knowledge representation.

 In addition to applying my Semantic Framework to use cases in Internet Protocol (IP) networking, I’ve continued to tease out increasingly expressive representations of data. Most recently, these representations have been articulated in RDFS – i.e., RDF Schema. And although I have not reached the final objective of an ontological representation in the Web Ontology Language (OWL), I am indeed progressing in this direction. (Whereas schemas capture the vocabulary of an application domain in geophysics or IT, for example, ontologies allow for knowledge-centric conceptualizations of the same.)  

From niche areas of geophysics to IP networking, the Semantic Framework is broadly applicable. As a workflow for systematically enhancing the expressivity of data, the Framework is based on open standards emerging largely from the World Wide Web Consortium (W3C). Because there is significant interest in this next-generation Web from numerous parties and angles, implementation platforms allow for increasingly expressive representations of data today. In making data actionable, the ultimate value of the Semantic Framework is in providing a means for integrating data from seemingly incongruous disciplines. For example, such representations are actually responsible for providing new results – derived by querying the representation through a ‘semantified’ version of the Structured Query Language (SQL) known as SPARQL. 

I’ve spoken formally and informally about this research to audiences in the sciences, IT, and elsewhere. With York co-authors spanning academic and non-academic staff, I’ve also published four refereed journal papers on aspects of the Framework, and have an invited book chapter currently under review – interestingly, this chapter has been contributed to a book focusing on data management in the Semantic Web. Of course, I’d be pleased to share any of my publications and discuss aspects of this work with those finding it of interest.

With thanks in advance for any connections you’re able to facilitate, Ian. 

If anything comes of this, I’m sure I’ll write about it here – eventually!

In the meantime, feedback is welcome.

April’s Contributions on Bright Hub

In April, I contributed two articles to the Web Development channel over on Bright Hub: