Archive | October 2017

Recent Workshop: Nurturing Quantitative Skills for the Physical Sciences through use of Scientific Models

unst_water_oilA few weeks back, I delivered a workshop at a conference focused on online learning. Unfortunately, abstracts were not made available via the event’s web site. In lieu of directing you elsewhere then, below is the abstract I submitted:

Nurturing Quantitative Skills for the Physical Sciences through use of Scientific Models

L. I. Lumb
Division of Natural Science, Faculty of Science, York University
Toronto, Ontario, Canada

With numerous scientists asserting that we have entered into The Anthropocene, a ‘brand new’ Geologic Epoch that underscores human impact on planet Earth, there has arguably never been a more relevant time for literacy in the physical sciences. Complicating this, however, is the implied need for quantitative skills demanded of those who seek to have more than a superficial degree of literacy in matters relating to climate or global change. Grounded by direct, personal experience in teaching science to non-scientists at the undergraduate university level, and independently validated by academic research into Science Technology Engineering Math (STEM) related programs and subjects, mastery of even the most-basic quantitative skills presents a well-established challenge in engaging learners at levels beyond the quantitatively superficial – a challenge that appears to be increasingly the case with the arriving cohort of undergraduates each Fall. In an effort to systematically develop and encourage proficiency in quantitative skills in data-rich courses in the physical sciences, a number of scientific models have been introduced by the author. Ranging from embarrassingly simple physical models using rice to investigate relative humidity in Earth’s atmosphere, to software-based models that employ spreadsheets to elucidate aspects of climate and global change, the use of scientific models presents intriguing challenges and opportunities for both instructors and students; needless to state, these challenges and opportunities can be significantly exacerbated in courses that are delivered online to numbers in excess of 100 students. After an introduction of scientific models as a pedagogical vehicle for nurturing quantitative skills, emphasis shifts to the sharing of real-world experiences with this approach in relatively large, online courses in physical sciences taught at the undergraduate level to non-majors (and therefore non-scientists). In ultimately working towards the primary example of a relatively simple, yet scientifically appropriate spreadsheet model for the Paris Climate Agreement, participants’ involvement will be scaffolded through use of other examples of models that have also been used in practice. Participants will also be encouraged to engage in a dialogue that compares and contrasts these models with more traditional approaches (e.g., formal essays). Finally, armed with some context for models as a pedagogical vehicle for quantitatively enhancing student engagement, participants will be guided through exercises that will allow them to develop their own models for their own teaching and learning requirements – whether their interests fall within or beyond scientifically oriented disciplines.

As you can see, I have a vested interest in nurturing quantitative skills, and models is one of the vehicles I make use of. If you share similar interests or better yet, if you have ideas as to what’s worked for you, please feel free to comment.